
Zonnon Language Experiment, or
How to Implement a Non-Conventional Object Model

for .NET
Jürg Gutknecht

Computer Systems Institute
ETH Zürich, Switzerland

gutknecht@inf.ethz.ch

Eugene Zueff
Computer Systems Institute

ETH Zürich, Switzerland
zueff@inf.ethz.ch

1. INTRODUCTION
This is a report on a work in progress. The project emerged from
our participation with Oberon (a descendant of Pascal and
Modula-2) in Project 7 that was launched by Microsoft Research
in 1999 with the goal of implementing an exemplary set of non-
standard programming languages for the .NET interoperability
platform. Our motivation for continuing was double-faced; a)
explore the potential of .NET in combination with the new
compiler integration technology CCI as an experimental field for
language design and b) implement Zonnon for .NET, an evolution
of Oberon for .NET.

2. ZONNON FOR .NET
Zonnon for .NET is a general purpose imperative programming
language. It features a rich and powerful but highly uniform object
model that supports a variety of programming styles, including a
conventional algorithms-and-data-structure style, modular and
object-oriented programming styles, and actor-based computing
models.

The highlights of the object model are

• a unique concept of abstraction called definition
• a corresponding notion of default implementation
• a combination of conventional object and thread called

active object
• a module construct

Roughly, definitions subsume and unify the common abstractions
of super class and interface and, in combination with a mechanism
of static aggregation of implementations, replace the concepts of
class hierarchy and single inheritance. Active objects come with
an integrated thread of control that describes their runtime
behavior. Modules are objects with a system-controlled life-cycle.

In addition, a block statement with optional processing modifiers
in curly braces and an exception catching clause has been added to
the language. Typical processing modifiers are ACTIVE (run as a
separate thread), EXCLUSIVE (run under mutual exclusion
within the corresponding object scope), and CONCURRENT (all
statements may potentially run concurrently).

We shall now illustrate the new constructs of the language by a
small series of simple but typical examples.

2.1 Definitions and Implementations
A jukebox has two “facets”. We can look at it alternatively as a
record store or a player. Correspondingly, we have the following
definitions:

DEFINITION Store;
PROC Clear;
Add (s: Lib.Song);

END Store.

DEFINITION Player;
VAR cur: Lib.Song;
PROC Play (s: Lib.Song);
PROC Stop;

END Player.

Assume that we in addition have a default implementation for the
Store definition

IMPLEMENTATION Store;
VAR rep: Lib.Song;
PROC Clear;
BEGIN rep := NIL

END Clear;
PROC Add (s: Lib.Song);
BEGIN s.next := rep; rep := s

END Add;
BEGIN Clear
END Store.

Then we get to this declaration of a jukebox object

OBJECT JukeBox IMPLEMENTS Player, Store;
IMPORT Store; (* aggregate *)
PROCEDURE Play (s: Lib.Song);

IMPLEMENTS Player.Play;
PROCEDURE Stop IMPLEMENTS Player.Stop;

..
END JukeBox.

Note that the Store default implementation is aggregated
implicitly to the object state space.

2.2 Active Objects
In a simple terrarium, the following kind of creatures may try to
survive. If the temperature is below a certain minimum, the
instances of this species simply hibernate, otherwise they either
walk around randomly or, if they are hungry, they hunt for prey.

OBJECT Creature;
VAR X, Y, temp, hunger, kill: INTEGER;
PROCEDURE NEW (x, y, t: INTEGER);

BEGIN X := x; Y := y; temp := t;
hunger := 0

END;
PROCEDURE SetTemp (dt: INTEGER);

BEGIN { EXCL } temp := temp + dt
END SetTemp;

BEGIN { ACTIVE }
LOOP

AWAIT temp >= minTemp;
WHILE hunger > minHunger DO

HuntStep(5, kill);
hunger := hunger – kill;
WHILE (kill > 0) & (hunger > 0) DO

HuntStep(7, kill);
hunger := hunger – kill

END;
RandStep(2)

END;
RandStep(4); hunger := hunger + 1

END
END Creature;

Note that the body part of the object declaration coherently tells
the full life story of such creatures. Also note that their behavior
still depends crucially on the environment calling the SetTemp
method. In particular, any instance may be blocked by the
AWAIT statement until the temperature is reported to have passed
the limit.

2.3 Modules
Modules are system-wide objects whose life-cycle is managed by
the system automatically. In particular, a module is loaded
dynamically when it is first called. Modules are “static” objects
that may statically import other modules.

Resource managers are good examples of system-oriented
modules. The following sketch shows a window manager with
encapsulated data structure that represents the current window
configuration in the display space of the system. Note that the
window manager is contained in a name space called System and
that it relies on a second module called DisplayManager.

MODULE System.WindowManager;
IMPORT System.DisplayManager;

(* static import *)
OBJECT { VALUE } Pos;

VAR X, Y, W, H: INTEGER
END Pos;

DEFINITION Window;
VAR pos: Pos;
PROCEDURE Draw ();

END Window;

VAR { PRIVATE } W, H: INTEGER;
bot: OBJ { Window };

PROCEDURE Open(this:OBJECT{Window},p:Pos);
BEGIN ...
END Open;

PROCEDURE Change(this:OBJECT{Window},p:Pos);
BEGIN ...
END Change;

BEGIN (* module initialization *) bot:=NIL;
W := System.DisplayManager.Width();

(* delegation *)
H := System.DisplayManager.Height();

END WindowManager.

A runtime system can be viewed structurally uniformly as an
acyclic hierarchy of modules. Typically, the bottom-most and top-
most members are system-modules and application-modules
respectively.

3. MAPPING ZONNON TO .NET
A precondition for any language to be implementable for .NET is
the existence of a mapping of its constructs to the Common
Language Runtime (CLR). Depending on the paradigm and model
represented by the language, this may be quite a challenge. In our
case of an imperative language, the mapping of the executing part
to the CLR execution engine is straightforward. What essentially
remains is a specification of the mapping of definitions,
implementations, active objects, and modules.

3.1 Mapping Definitions and Implementations
Different mapping options exist. If state variables in definitions
are mapped to properties or virtual fields (given they exist), the
complete state space can theoretically be synthetisized in the
implementing object, however, with some efficiency penalty. In
contrast, the solution below mapping to C# (.NET’s canonical
language) is based on an internal helper class providing the
aggregate’s state space.

DEFINITION D;
TYPE e = (a, b);
VAR x: T;
PROCEDURE f (t: T);
PROCEDURE g (): T;

END D;

IMPLEMENTATION D;
VAR y: T;
PROCEDURE f (t: T);
BEGIN x := t; y := t
END f;

END D;

is mapped to

interface D_i {
T x { get; set; }
void f(T t); T g (); }

internal class D_b {
private T x_b;
public enum e = (a, b);
public T x {
get { return x_b };
set { x_b = ... } } }

public class D_c: D_b {
T y;
void f(T t) {
x_b = t; y = t; } }

3.2 Mapping Active Objects
Mapping active objects is a rather technical than conceptual
problem. Obviously, .NET multithreading facilities must serve in
this case as images of the Zonnon active constructs. In the
following we suggest a “brute force” approach to the mapping of
the AWAIT statement. It is based on mass notification of waiting
objects at the end of each critical section. We hope to be able to
refine this solution later.

BEGIN { ACTIVE } S END

Method void body() { S };
Field Thread thread;

NEW(x)

x.thread = new Thread(
new ThreadStart(body));

x.thread.Start()

AWAIT c

while !c { Monitor.Wait(this); }

BEGIN { EXCL } S END

Monitor.Enter(this); S;
Monitor.PulseAll(this);
Monitor.Exit(this);

3.3 Mapping Modules
Essentially, modules are simply mapped to “static” classes that is
classes with static members only. Here is a sketch of the image of
the above mentioned window manager under the .NET mapping:

namespace System {
namespace WindowManager {

public struct Pos { ... };
public class Window { public Pos pos;

public virtual Draw ();
}
public sealed class WindowManager {

private static int W, H; Window bot;
public static Open (Window this;Pos p)

{ ... };
public static Change(Window this;Pos p)

{ ... }
public static void WindowManager () {

...
W :=

System.DisplayManager.DisplayManager.Width();
...

}}
}

4. ZONNON FOR .NET COMPILER
4.1 Compiler Overview
Zonnon compiler is developed for .NET platform and runs on top
of it. Compiler accepts Zonnon sources (compilation units) and
produces conventional .NET assemblies containing MSIL code
and metadata.

There are two versions of the compiler: command-line compiler
and compiler integrated into Visual Studio environment.

Compiler is implemented in C# using Common Compiler
Infrastructure framework (see below), designed and developed in
Microsoft Research, Redmond.

4.2 Common Compiler Infrastructure
Common Compiler Infrastructure (CCI) is a set of programming
resources (C# classes) providing support for implementing
compilers and other language tools for .NET platform. This
support is not comprehensive; some aspects of compiler
functionality are unsupported, e.g., lexical and syntax analysis –
the details are given on the poster. But there is a very important
thing CCI does support: integration into MS Visual Studio
environment. Potentially, it is possible to achieve the full
integration of a compiler with all VS components such as editor,
debugger, project manager, online help system etc.

CCI framework could be considered as a part of entire .NET
framework; the namespace Compiler containing CCI resources
is included to System namespace.

CCI consists of three major parts: intermediate representation, a
set of transformers, and integration service.

Intermediate Representation (IR) is a rich hierarchy of C#
classes representing most common and typical notions of modern
programming languages. IR hierarchy is based on the C# language
architecture: its classes reflect all C# and CLR notions as class,
method, statement, expression etc. This allows compiler developer
to represent similar concepts of his/her language directly. In case
the language has notions or constructs which are not represented
by IR set of classes, it is possible to extend the original IR
hierarchy adding new IR classes. Then corresponding
transformations should be added – either as an extension of
standard “visitors” (see below) or as a completely new visitor.

Transformers (“Visitors”) is a set of based classes performing
consecutive transformations from IR to .NET assembly. There are
five standard visitors predefined in CCI: Looker, Declarer,
Resolver, Checker, and Normalizer. All visitors walk an IR
performing various kinds of transformations. Looker visitor
(together with its companion Declarer visitor) replaces Identifier
nodes with the members/locals they resolve to. Resolver visitor
resolves overloads and deduces expression result types. Checker
visitor checks for semantic errors and tries to repair them. Finally,
Normalizer visitor prepares IR for serializing it to MSIL and
metadata.

All visitors are implemented as classes inherited from CCI’s
StandardVisitor class. It is possible to extend the functionality of a
visitor adding methods processing specific language constructs or
create a new visitor. CCI requires that all visitors used in a
compiler are (directly or indirectly) inherited from
StandardVisitor class.

Integration Service is a variety of classes and methods providing
integration to Visual Studio environment. The classes encapsulate
specific data structures and functionality required for editing,
debugging, background compilation etc.

4.3 Zonnon Compiler Architecture
Conceptually, compiler organization is quite traditional: Scanner
performs decoupling the source text into lexacal tokens which are
accepted by Parser. Parser performs syntax analysis and builts the
abstract syntax tree (AST) for the source compilation unit using

CCI IR classes. Every AST node is an instance of an IR class.
“Semantic” part of the compiler consists of a series of consecutive
transformations of the AST built by the Parser. The result of such
transformations is the .NET assembly which is the result of
compiler’s work.

However, from the architectural point of view, Zonnon compiler
differs form most “conventional” compilers. Instead of the “black
box” approach, where all compiler algorithms and data structures
are encapsulated into the compiler and are not visible from
outside, Zonnon compiler is, in fact, an open collection of
resources. In particular, such data structures as token sequence
and AST tree are acceptable (via special interface) from outside
compiler. The same is for compiler components: for example, it is
possible to invoke Scanner to extract tokens from a specified part
of the source, and to invoke Parser to build a sub-tree for this part
of the source.

Such architecture is stated by CCI framework and provides deep
and natural compiler integration to Visual Studio environment. In
order to support integration CCI contains prototype classes for
Scanner and Parser. The actual implementation of Scanner and
Parser components of the Zonnon compiler are classes inherited
from those prototype classes.

Compiler extends IR node set adding a number of Zonnon-
specific node types for the notions of Module, Definition,
Implementation, Object and for some other constructs which do
not have explicit prototypes among CCI nodes. The added nodes
are being processed by the extended Looker visitor which is a
class inherited from the standard CCI’s Looker class. The result of
the extended Looker’s work is the semantically equivalent AST
tree containing only nodes of predefined CCI types. Therefore, the
extended Looker implements mappings described above in
Section 3.

5. ACKNOWLEDGMENTS
The authors gratefully acknowledge the initiative taken by
Microsoft for developing .NET and for inviting us to participate in
Project 7. In particular, we thank Jim Miller, Brad Merrill, and
Erik Meijer from Microsoft Research for numerous opportunities
to discuss technical matters in connection with the development of
Oberon for .NET, and Herman Venter for providing the CCI
framework and letting us be his Guinea pigs. Last but not least,
our sincere thanks go to Patrick Reali for his valuable suggestions
concerning the mapping of Zonnon definitions to .NET.

