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1. INTRODUCTION 
This is a report on a work in progress. The project emerged from 
our participation with Oberon (a descendant of Pascal and 
Modula-2) in Project 7 that was launched by Microsoft Research 
in 1999 with the goal of implementing an exemplary set of non-
standard programming languages for the .NET interoperability 
platform. Our motivation for continuing was double-faced; a) 
explore the potential of .NET in combination with the new 
compiler integration technology CCI as an experimental field for 
language design and b) implement Zonnon for .NET, an evolution 
of Oberon for .NET. 

2. ZONNON FOR .NET 
Zonnon for .NET is a general purpose imperative programming 
language. It features a rich and powerful but highly uniform object 
model that supports a variety of programming styles, including a 
conventional algorithms-and-data-structure style, modular and 
object-oriented programming styles, and actor-based computing 
models. 

The highlights of the object model are 

•  a unique concept of abstraction called definition 
•  a corresponding notion of default implementation 
•  a combination of conventional object and thread called 

active object 
•  a module construct 

Roughly, definitions subsume and unify the common abstractions 
of super class and interface and, in combination with a mechanism 
of static aggregation of implementations, replace the concepts of 
class hierarchy and single inheritance. Active objects come with 
an integrated thread of control that describes their runtime 
behavior. Modules are objects with a system-controlled life-cycle. 

In addition, a block statement with optional processing modifiers 
in curly braces and an exception catching clause has been added to 
the language. Typical processing modifiers are ACTIVE (run as a 
separate thread), EXCLUSIVE (run under mutual exclusion 
within the corresponding object scope), and CONCURRENT (all 
statements may potentially run concurrently). 

We shall now illustrate the new constructs of the language by a 
small series of simple but typical examples. 

2.1 Definitions and Implementations 
A jukebox has two “facets”. We can look at it alternatively as a 
record store or a player. Correspondingly, we have the following 
definitions: 

DEFINITION Store;
PROC Clear;
Add (s: Lib.Song);

END Store.

DEFINITION Player;
VAR cur: Lib.Song;
PROC Play (s: Lib.Song);
PROC Stop;

END Player.

Assume that we in addition have a default implementation for the 
Store definition 

IMPLEMENTATION Store;
VAR rep: Lib.Song;
PROC Clear;
BEGIN rep := NIL

END Clear;
PROC Add (s: Lib.Song);
BEGIN s.next := rep; rep := s

END Add;
BEGIN Clear
END Store.

Then we get to this declaration of a jukebox object 

OBJECT JukeBox IMPLEMENTS Player, Store;
IMPORT Store; (* aggregate *)
PROCEDURE Play (s: Lib.Song);

IMPLEMENTS Player.Play;
PROCEDURE Stop IMPLEMENTS Player.Stop;

..
END JukeBox.

Note that the Store default implementation is aggregated 
implicitly to the object state space. 

2.2 Active Objects 
In a simple terrarium, the following kind of creatures may try to 
survive. If the temperature is below a certain minimum, the 
instances of this species simply hibernate, otherwise they either 
walk around randomly or, if they are hungry, they hunt for prey. 

 



OBJECT Creature;
VAR X, Y, temp, hunger, kill: INTEGER;
PROCEDURE NEW (x, y, t: INTEGER);

BEGIN X := x; Y := y; temp := t;
hunger := 0

END;
PROCEDURE SetTemp (dt: INTEGER);

BEGIN { EXCL } temp := temp + dt
END SetTemp;

BEGIN { ACTIVE }
LOOP

AWAIT temp >= minTemp;
WHILE hunger > minHunger DO

HuntStep(5, kill);
hunger := hunger – kill;
WHILE (kill > 0) & (hunger > 0) DO

HuntStep(7, kill);
hunger := hunger – kill

END;
RandStep(2)

END;
RandStep(4); hunger := hunger + 1

END
END Creature;

Note that the body part of the object declaration coherently tells 
the full life story of such creatures. Also note that their behavior 
still depends crucially on the environment calling the SetTemp 
method. In particular, any instance may be blocked by the 
AWAIT statement until the temperature is reported to have passed 
the limit.  

2.3 Modules 
Modules are system-wide objects whose life-cycle is managed by 
the system automatically. In particular, a module is loaded 
dynamically when it is first called. Modules are “static” objects 
that may statically import other modules. 

Resource managers are good examples of system-oriented 
modules. The following sketch shows a window manager with 
encapsulated data structure that represents the current window 
configuration in the display space of the system. Note that the 
window manager is contained in a name space called System and 
that it relies on a second module called DisplayManager. 

MODULE System.WindowManager;
IMPORT System.DisplayManager;

(* static import *)
OBJECT { VALUE } Pos;

VAR X, Y, W, H: INTEGER
END Pos;

DEFINITION Window;
VAR pos: Pos;
PROCEDURE Draw ();

END Window;

VAR { PRIVATE } W, H: INTEGER;
bot: OBJ { Window };

PROCEDURE Open(this:OBJECT{Window},p:Pos);
BEGIN ...
END Open;

PROCEDURE Change(this:OBJECT{Window},p:Pos);
BEGIN ...
END Change;

BEGIN (* module initialization *) bot:=NIL;
W := System.DisplayManager.Width();

(* delegation *)
H := System.DisplayManager.Height();

END WindowManager.

A runtime system can be viewed structurally uniformly as an 
acyclic hierarchy of modules. Typically, the bottom-most and top-
most members are system-modules and application-modules 
respectively. 

3. MAPPING ZONNON TO .NET 
A precondition for any language to be implementable for .NET is 
the existence of a mapping of its constructs to the Common 
Language Runtime (CLR). Depending on the paradigm and model 
represented by the language, this may be quite a challenge. In our 
case of an imperative language, the mapping of the executing part 
to the CLR execution engine is straightforward. What essentially 
remains is a specification of the mapping of definitions, 
implementations, active objects, and modules. 

3.1 Mapping Definitions and Implementations 
Different mapping options exist. If state variables in definitions 
are mapped to properties or virtual fields (given they exist), the 
complete state space can theoretically be synthetisized in the 
implementing object, however, with some efficiency penalty. In 
contrast, the solution below mapping to C# (.NET’s canonical 
language) is based on an internal helper class providing the 
aggregate’s state space.

DEFINITION D;
TYPE e = (a, b);
VAR x: T;
PROCEDURE f (t: T);
PROCEDURE g (): T;

END D;

IMPLEMENTATION D;
VAR y: T;
PROCEDURE f (t: T);
BEGIN x := t; y := t
END f;

END D;

is mapped to 

interface D_i {
T x { get; set; }
void f(T t); T g (); }

internal class D_b {
private T x_b;
public enum e = (a, b);
public T x {
get { return x_b };
set { x_b = ... } } }

public class D_c: D_b {
T y;
void f(T t) {
x_b = t; y = t; } }



3.2 Mapping Active Objects 
Mapping active objects is a rather technical than conceptual 
problem. Obviously, .NET multithreading facilities must serve in 
this case as images of the Zonnon active constructs. In the 
following we suggest a “brute force” approach to the mapping of 
the AWAIT statement. It is based on mass notification of waiting 
objects at the end of each critical section. We hope to be able to 
refine this solution later. 

BEGIN { ACTIVE } S END

Method void body() { S };
Field Thread thread;

NEW(x)

x.thread = new Thread(
new ThreadStart(body));

x.thread.Start()

AWAIT c

while !c { Monitor.Wait(this); }

BEGIN { EXCL } S END

Monitor.Enter(this); S;
Monitor.PulseAll(this);
Monitor.Exit(this);

3.3 Mapping Modules 
Essentially, modules are simply mapped to “static” classes that is 
classes with static members only. Here is a sketch of the image of 
the above mentioned window manager under the .NET mapping: 

namespace System {
namespace WindowManager {

public struct Pos { ... };
public class Window { public Pos pos;

public virtual Draw ();
}
public sealed class WindowManager {

private static int W, H; Window bot;
public static Open (Window this;Pos p)

{ ... };
public static Change(Window this;Pos p)

{ ... }
public static void WindowManager () {

...
W :=

System.DisplayManager.DisplayManager.Width();
...

}}
}

4. ZONNON FOR .NET COMPILER 
4.1 Compiler Overview 
Zonnon compiler is developed for .NET platform and runs on top 
of it. Compiler accepts Zonnon sources (compilation units) and 
produces conventional .NET assemblies containing MSIL code 
and metadata. 

There are two versions of the compiler: command-line compiler 
and compiler integrated into Visual Studio environment. 

Compiler is implemented in C# using Common Compiler 
Infrastructure framework (see below), designed and developed in 
Microsoft Research, Redmond. 

4.2 Common Compiler Infrastructure 
Common Compiler Infrastructure (CCI) is a set of programming 
resources (C# classes) providing support for implementing 
compilers and other language tools for .NET platform. This 
support is not comprehensive; some aspects of compiler 
functionality are unsupported, e.g., lexical and syntax analysis – 
the details are given on the poster. But there is a very important 
thing CCI does support: integration into MS Visual Studio 
environment. Potentially, it is possible to achieve the full 
integration of a compiler with all VS components such as editor, 
debugger, project manager, online help system etc. 

CCI framework could be considered as a part of entire .NET 
framework; the namespace Compiler containing CCI resources 
is included to System namespace. 

CCI consists of three major parts: intermediate representation, a 
set of transformers, and integration service. 

Intermediate Representation (IR) is a rich hierarchy of C# 
classes representing most common and typical notions of modern 
programming languages. IR hierarchy is based on the C# language 
architecture: its classes reflect all C# and CLR notions as class, 
method, statement, expression etc. This allows compiler developer 
to represent similar concepts of his/her language directly. In case 
the language has notions or constructs which are not represented 
by IR set of classes, it is possible to extend the original IR 
hierarchy adding new IR classes. Then corresponding 
transformations should be added – either as an extension of 
standard “visitors” (see below) or as a completely new visitor. 

Transformers (“Visitors”) is a set of based classes performing 
consecutive transformations from IR to .NET assembly. There are 
five standard visitors predefined in CCI: Looker, Declarer, 
Resolver, Checker, and Normalizer. All visitors walk an IR 
performing various kinds of transformations. Looker visitor 
(together with its companion Declarer visitor) replaces Identifier 
nodes with the members/locals they resolve to. Resolver visitor 
resolves overloads and deduces expression result types. Checker 
visitor checks for semantic errors and tries to repair them. Finally, 
Normalizer visitor prepares IR for serializing it to MSIL and 
metadata. 

All visitors are implemented as classes inherited from CCI’s 
StandardVisitor class. It is possible to extend the functionality of a 
visitor adding methods processing specific language constructs or 
create a new visitor. CCI requires that all visitors used in a 
compiler are (directly or indirectly) inherited from 
StandardVisitor class. 

Integration Service is a variety of classes and methods providing 
integration to Visual Studio environment. The classes encapsulate 
specific data structures and functionality required for editing, 
debugging, background compilation etc. 

4.3 Zonnon Compiler Architecture 
Conceptually, compiler organization is quite traditional: Scanner 
performs decoupling the source text into lexacal tokens which are 
accepted by Parser. Parser performs syntax analysis and builts the 
abstract syntax tree (AST) for the source compilation unit using 



CCI IR classes. Every AST node is an instance of an IR class. 
“Semantic” part of the compiler consists of a series of consecutive 
transformations of the AST built by the Parser. The result of such 
transformations is the .NET assembly which is the result of 
compiler’s work. 

However, from the architectural point of view, Zonnon compiler 
differs form most “conventional” compilers. Instead of the “black 
box” approach, where all compiler algorithms and data structures 
are encapsulated into the compiler and are not visible from 
outside, Zonnon compiler is, in fact, an open collection of 
resources. In particular, such data structures as token sequence 
and AST tree are acceptable (via special interface) from outside 
compiler. The same is for compiler components: for example, it is 
possible to invoke Scanner to extract tokens from a specified part 
of the source, and to invoke Parser to build a sub-tree for this part 
of the source. 

Such architecture is stated by CCI framework and provides deep 
and natural compiler integration to Visual Studio environment. In 
order to support integration CCI contains prototype classes for 
Scanner and Parser. The actual implementation of Scanner and 
Parser components of the Zonnon compiler are classes inherited 
from those prototype classes. 

Compiler extends IR node set adding a number of Zonnon-
specific node types for the notions of Module, Definition, 
Implementation, Object and for some other constructs which do 
not have explicit prototypes among CCI nodes. The added nodes 
are being processed by the extended Looker visitor which is a 
class inherited from the standard CCI’s Looker class. The result of 
the extended Looker’s work is the semantically equivalent AST 
tree containing only nodes of predefined CCI types. Therefore, the 
extended Looker implements mappings described above in 
Section 3. 
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